Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.286
Filtrar
1.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
2.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587455

RESUMO

The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.


Assuntos
Bombyx , Lepidópteros , Animais , Bombyx/genética , Drosophila melanogaster/genética , Pigmentação/genética , Drosophila , Larva/genética , Fatores de Transcrição/genética
3.
BMC Genomics ; 25(1): 337, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38641568

RESUMO

BACKGROUND: Larval settlement and metamorphosis represent critical events in the life history of marine benthic animals. Myoinhibitory peptide (MIP) plays a pivotal role in larval settlement of marine invertebrates. However, the molecular mechanisms of MIP involved in this process are not well understood. RESULTS: In this study, we evaluated the effects of thirteen MIP mature peptides on triggering the larval settlement of Urechis unicinctus (Xenopneusta, Urechidae), and determined that MIP2 was the principal neuropeptide. Transcriptomic analysis was employed to identify differentially expressed genes (DEGs) between the MIP2-treated larvae and normal early-segmentation larvae. Both cAMP and calcium signaling pathways were enriched in the DEGs of the MIP2-treated larvae, and two neuropeptide receptor genes (Spr, Fmrfar) were up-regulated in the MIP2-treated larvae. The activation of the SPR-cAMP pathway by MIP2 was experimentally validated in HEK293T cells. Furthermore, fourteen cilia-related genes, including Tctex1d2, Cfap45, Ift43, Ift74, Ift22, Cav1 and Mns1, etc. exhibited down-regulated expression in the MIP2-treated larvae. Whole-mount in situ hybridization identified two selected ciliary genes, Tctex1d2 and Cfap45, were specially expressed in circumoral ciliary cells of the early-segmentation larvae. Knocking down Tctex1d2 mRNA levels by in vivo RNA interference significantly increased the larval settlement rate. CONCLUSION: Our findings suggest that MIP2 inhibits the function of the cilia-related genes, such as Tctex1d2, through the SPR-cAMP-PKA pathway, thereby inducing larval settlement in U. unicinctus. The study contributes important data to the understanding of neuropeptide regulation in larval settlement.


Assuntos
Neuropeptídeos , Poliquetos , Humanos , Animais , Larva/genética , Células HEK293 , Poliquetos/genética , Neuropeptídeos/genética , Neuropeptídeos/química , Perfilação da Expressão Gênica
4.
Sci Rep ; 14(1): 7759, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565594

RESUMO

The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.


Assuntos
Sistema Hipotálamo-Hipofisário , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Larva/genética , Larva/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Adaptação Psicológica
5.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561802

RESUMO

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Assuntos
Urocordados , Animais , Urocordados/genética , Morfogênese/genética , Epiderme , Sistema Nervoso Periférico , Larva/genética , Celulose
6.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582582

RESUMO

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Assuntos
Mariposas , Animais , Mariposas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentação/genética
7.
Pestic Biochem Physiol ; 200: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582598

RESUMO

The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.


Assuntos
Inseticidas , Mariposas , Oryza , Animais , Larva/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Pupa , Mariposas/metabolismo , Oryza/metabolismo
8.
Pestic Biochem Physiol ; 200: 105839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582601

RESUMO

Lepidopteran insects are refractory to RNA interference (RNAi) response, especially to orally delivered double-stranded RNA (dsRNA). High nuclease activity in the midgut lumen is proposed as one of the major reasons for RNAi insensitivity. We identified three dsRNase genes highly expressed in the midgut of fall armyworm (FAW), Spodoptera frugiperda. The genomic region harboring those three dsRNase genes was deleted using the CRISPR-Cas9-mediated genome editing method. A homozygous line with deletion of three dsRNase genes was produced. dsRNA degradation by midgut lumen contents of mutant larvae was lower than in wild-type larvae. Feeding dsRNA targeting the inhibitor of apoptosis (IAP) gene increased knockdown of the target gene and mortality in mutants compared to wild-type larvae. These results suggest that dsRNases in the midgut contribute to RNAi inefficiency in FAW. Formulations that protect dsRNA from dsRNase degradation may improve RNAi efficiency in FAW and other lepidopteran insects.


Assuntos
Sistemas CRISPR-Cas , RNA de Cadeia Dupla , Animais , Interferência de RNA , Spodoptera/genética , Spodoptera/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Insetos/genética , Larva/genética , Larva/metabolismo
9.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612913

RESUMO

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Assuntos
Proteínas Hedgehog , Perciformes , Animais , Proteínas Hedgehog/genética , Cloreto de Sódio/farmacologia , Água , Peixe-Zebra/genética , Cloreto de Cálcio , Ecossistema , Cloreto de Sódio na Dieta , Larva/genética , Expressão Gênica
10.
PeerJ ; 12: e17087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623496

RESUMO

Background: Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods: The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results: Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.


Assuntos
Bacillus thuringiensis , Microbiota , Oryza , Animais , Masculino , Spodoptera/genética , Zea mays/genética , Oryza/genética , RNA Ribossômico 16S/genética , Estágios do Ciclo de Vida , Larva/genética , Bacillus thuringiensis/genética , Microbiota/genética
11.
Proc Biol Sci ; 291(2021): 20240122, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628120

RESUMO

Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.


Assuntos
Besouros , Microbiota , Animais , Besouros/genética , Microbiota/genética , Larva/genética , Evolução Biológica , Variação Genética
12.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594617

RESUMO

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Assuntos
Bacillus thuringiensis , Mariposas , Praguicidas , Animais , Larva/genética , Larva/metabolismo , Soja/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores/métodos , Mariposas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromossomos/metabolismo , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas/genética
13.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628055

RESUMO

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Assuntos
Besouros , Proteínas de Insetos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Besouros/genética , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Metamorfose Biológica , Ecdisterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interferência de RNA , Pupa/genética , Pupa/metabolismo
14.
Zoolog Sci ; 41(1): 32-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587515

RESUMO

Bullfrog (Rana catesbeiana) larvae inhabiting the main island of Japan overwinter as preclimax animals, whereas the larvae that reached climax in summer complete metamorphosis. We analyzed the mRNA expression levels of the adenohypophyseal hormones, hypothalamic hormones, and their receptors that are involved in controlling metamorphosis in tadpoles at various developmental stages available in summer and winter in order to understand the hormonal mechanism regulating metamorphosis progression. Corticotropin-releasing factor (CRF) and thyrotropin ß-subunit (TSHß) mRNA expression was enhanced as they reached the climax stage in metamorphosing summer tadpoles, although type 2 CRF receptor (CRFR2) mRNA levels demonstrated a tendency of elevation, indicating the activation of the hypothalamo-hypophyseal axis for stimulating the release of thyroid hormone in summer. Arginine vasotocin (AVT) mRNA levels were elevated as metamorphosis progressed, but mRNA expression levels were not synchronized with those of proopiomelanocortin (POMC) and V1b-type AVT receptor (V1bR). The elevation of mRNA levels of prolactin (PRL) 1A and type 3 thyrotropin-releasing hormone receptor (TRHR3), but not of thyrotropin-releasing hormone (TRH) precursor mRNA levels, was noted in climactic tadpoles, indicating that PRL mRNA levels are not simply dependent on the expression levels of TRH precursor mRNA. In the preclimactic larvae captured in winter, which are in metamorphic stasis, mRNA levels of pituitary hormones, hypothalamic factors, and their receptors remained low or at levels similar to those of the larvae captured in summer. These results indicate the relationship between the mRNA expression of metamorphosis-related factors and the seasonal progression/stasis of metamorphosis.


Assuntos
Hormônios Hipofisários , Prolactina , Animais , Estações do Ano , Japão , Larva/genética
15.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1225-1236, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658159

RESUMO

Phospholipase A2 (PLA2) is widely distributed in animals, plants, and microorganisms, and it plays an important role in many physiological activities. In a previous study, we have identified a secretory PLA2 in Bombyx mori (BmsPLA2-1-1). In this study, we further identified four new sPLA2 genes (BmsPLA2-1-2, BmsPLA2-2, BmsPLA2-3, and BmsPLA2-4) in B. mori genome. All four genes exhibits the characteristic features of sPLA2, including the sPLA2 domain, metal binding sites, and highly conserved catalytic domain. This study completed the cloning, in vitro expression, and expression pattern analysis of the BmsPLA2-4 gene in B. mori. The full length of BmsPLA2-4 is 585 bp, and the recombinant protein obtained through prokaryotic expression has an estimated size of 25 kDa. qRT-PCR analysis revealed that the expression level of BmsPLA2-4 reached its peak on the first day of the fifth instar larval stage. Tissue expression profiling analysis showed that BmsPLA2-4 had the highest expression level in the midgut, followed by the epidermis and fat body. Western blotting analysis results were consistent with those of qRT-PCR. Furthermore, after infecting fifth instar 1-day-old larvae with Escherichia coli and Staphylococcus aureus, the expression level of the BmsPLA2-4 gene significantly increased in 24 h. The findings of this study provides a theoretical basis and valuable experimental data for future related research.


Assuntos
Bombyx , Fosfolipases A2 Secretórias , Bombyx/genética , Bombyx/enzimologia , Animais , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Larva/genética , Clonagem Molecular , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/biossíntese , Sequência de Aminoácidos , Perfilação da Expressão Gênica
16.
PeerJ ; 12: e16944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495762

RESUMO

Background: The chickpea pod borer Helicoverpa armigera (Hübner) is a significant insect pest of chickpea crops, causing substantial global losses. Methods: Field experiments were conducted in Central Punjab, Pakistan, to investigate the impact of biotic and abiotic factors on pod borer population dynamics and infestation in nine kabuli chickpea genotypes during two cropping seasons (2020-2021 and 2021-2022). The crops were sown in November in both years, with row-to-row and plant-to-plant distances of 30 and 15 cm, respectively, following a randomized complete block design (RCBD). Results: Results showed a significant difference among the tested genotypes in trichome density, pod wall thickness, and leaf chlorophyll contents. Significantly lower larval population (0.85 and 1.10 larvae per plant) and percent damage (10.65% and 14.25%) were observed in genotype Noor-2019 during 2020-2021 and 2021-2022, respectively. Pod trichome density, pod wall thickness, and chlorophyll content of leaves also showed significant variation among the tested genotypes. Pod trichome density and pod wall thickness correlated negatively with larval infestation, while chlorophyll content in leaves showed a positive correlation. Additionally, the larval population positively correlated with minimum and maximum temperatures, while relative humidity negatively correlated with the larval population. Study results explore natural enemies as potential biological control agents and reduce reliance on chemical pesticides.


Assuntos
Cicer , Mariposas , Animais , Clorofila , Cicer/genética , Produtos Agrícolas/genética , Genótipo , 60627 , Larva/genética , Mariposas/genética
17.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488057

RESUMO

Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.


Assuntos
Borboletas , Dípteros , Masculino , Feminino , Animais , Borboletas/genética , Cromossomos/genética , Genoma , Larva/genética , Transcriptoma , Dípteros/genética
18.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542342

RESUMO

Honey bees have a very interesting phenomenon where the larval diets of two different honey bee species are exchanged, resulting in altered phenotypes, namely, a honey bee nutritional crossbreed. This is a classical epigenetic process, but its underlying mechanisms remain unclear. This study aims to investigate the contribution of DNA methylation to the phenotypic alternation of a Apis mellifera-Apis cerana nutritional crossbreed. We used a full nutritional crossbreed technique to rear A. cerana queens by feeding their larvae with A. mellifera royal-jelly-based diets in an incubator. Subsequently, we compared genome-wide methylation sequencing, body color, GC ratio, and the DMRs between the nutritional crossbreed, A. cerana queens (NQs), and control, A. cerana queens (CQs). Our results showed that the NQ's body color shifted to yellow compared to the black control queens. Genome methylation sequencing revealed that NQs had a much higher ratio of mCG than that of CQs. A total of 1020 DMGs were identified, of which 20 DMGs were enriched into key pathways for melanin synthesis, including tryptophan, tyrosine, dopamine, and phenylalanine KEGG pathways. Three key differentially methylated genes [OGDH, ALDH(NAD+) and ALDH7] showed a clear, altered DNA methylation in multiple CpG islands in NQs compared to CQs. Consequently, these findings revealed that DNA methylation participates in A. cerana-A. mellifera nutritional crossbreeding as an important epigenetic modification. This study serves as a model of cross-kingdom epigenetic mechanisms in insect body color induced by environmental factors.


Assuntos
Metilação de DNA , Ácidos Graxos , Genoma , Abelhas/genética , Animais , Larva/genética , Epigênese Genética
19.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542400

RESUMO

Bombyx mori was domesticated from Bombyx mandarina. The long-term domestication of the silkworm has brought about many remarkable changes to its body size and cocoon shell weight. However, the molecular mechanism underlying the improvement in the economic characteristics of this species during domestication remains unclear. In this study, we found that a transposable element (TE)-Bm1-was present in the upstream regulatory region of the Mlx (Max-like protein X) gene in wild silkworms but not in all domesticated silkworms. The absence of Bm1 caused an increase in the promoter activity and mRNA content of Mlx. Mlx and its partner Mondo belong to the bHLHZ transcription factors family and regulate nutrient metabolism. RNAi of Mlx and Mondo decreased the expression and promoter activity of glucose metabolism-related genes (trehalose transport (Tret), phosphofructokinase (PFK), and pyruvate kinase (PK)), lipogenic genes (Acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS)), and glutamine synthesis gene (Glutamine synthase 2, (GS2)). Furthermore, the transgenic overexpression of Mlx and Mondo in the fat body of silkworms increased the larval body size, cocoon shell weight, and egg number, but the silencing of the two genes resulted in the opposite phenotypes. Our results reveal the molecular mechanism of Mlx selection during domestication and its successful use in the molecular breeding of Bombyx mori.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Larva/genética , Domesticação , Glutamina/metabolismo , Tamanho Corporal
20.
Insect Biochem Mol Biol ; 168: 104110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522557

RESUMO

The black soldier fly (BSF), Hermetia illucens, has gained traction recently as a means to achieve closed-loop production cycles. BSF can subsist off mammalian waste products and their consumption of such waste in turn generates compost that can be used in agricultural operations. Their environmental impact is minimal and BSF larvae are edible, with a nutritional profile high in protein and other essential vitamins. Therefore, it is conceivable to use BSF as a mechanism for both reducing organic waste and maintaining a low-impact food source for animal livestock or humans. The main drawback to BSF as a potential human food source is they are deficient in fat-soluble vitamins such as Vitamins A, D, and E. While loading BSF with essential vitamins may be achieved via diet-based interventions, this undercuts the goal of a closed-loop as specialized diets would require additional supply chains. An alternative is to genetically engineer BSF that can synthesize these essential vitamins. Here we describe a BSF line that has been engineered with the two main carotenoid biosynthetic genes, CarRA and CarB for production of provitamin carotenoids within the Vitamin A family. Our data describe the manipulation of the BSF genome to insert transgenes for expression of functional protein products.


Assuntos
Dípteros , Humanos , Animais , Dípteros/genética , Larva/genética , Animais Geneticamente Modificados , Vitaminas , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...